1.
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 nations. CA Most cancers J Clin. 2021;71:209–49.
Google Scholar
2.
Grewal AS, Jones J, Lin A. Palliative radiation remedy for fead and neck cancers. Int J Radiat Oncol Biol Phys. 2019;105:254–66.
PubMed
Google Scholar
3.
Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2019. CA Most cancers J Clin. 2019;69:7–34.
Google Scholar
4.
Feng X, Xu W, Li Z, Tune W, Ding J, Chen X. Immunomodulatory nanosystems. Adv Sci (Weinh). 2019;6:1900101.
Google Scholar
5.
Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Most cancers Res. 2011;17:7337–46.
CAS
PubMed
PubMed Central
Google Scholar
6.
Chen J, Cui JD, Guo XT, Cao X, Li Q. Elevated expression of miR-641 contributes to erlotinib resistance in non-small-cell lung most cancers cells by focusing on NF1. Most cancers Med. 2018;7:1394–403.
CAS
PubMed
PubMed Central
Google Scholar
7.
Solar F, Cui L, Li T, Chen S, Tune J, Li D. Oxaliplatin induces immunogenic cells demise and enhances therapeutic efficacy of checkpoint inhibitor in a mannequin of murine lung carcinoma. J Recept Sign Transduct Res. 2019;39:208–14.
CAS
PubMed
Google Scholar
8.
Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired floor chemistry for multifunctional coatings. Science. 2007;318:426–30.
CAS
PubMed
PubMed Central
Google Scholar
9.
Li Y, Hong W, Zhang H, Zhang TT, Chen Z, Yuan S, Peng P, Xiao M, Xu L. Photothermally triggered cytosolic drug supply of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J Management Launch. 2020;317:232–45.
CAS
PubMed
Google Scholar
10.
Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal efficiency for tumor multimodal remedies. Adv Sci (Weinh). 2018;5:1800510.
Google Scholar
11.
Wang Z, Duan Y, Duan Y. Utility of polydopamine in tumor focused drug supply system and its drug launch conduct. J Management Launch. 2018;290:56–74.
CAS
PubMed
Google Scholar
12.
Shi J, Ma Z, Pan H, Liu Y, Chu Y, Wang J, Chen L. Biofilm-encapsulated nano drug supply system for the therapy of colon most cancers. J Microencapsul. 2020;37:481–91.
CAS
PubMed
Google Scholar
13.
Fan Z, Liu Q, Lu F, Dong Z, Gao P. Utility of belly imaging based mostly on nano drug supply system for prognosis and therapy of liver most cancers. J Nanosci Nanotechnol. 2021;21:824–32.
CAS
PubMed
Google Scholar
14.
Zhao Q, Solar X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Development of homologous most cancers cell membrane camouflage in a nano-drug supply system for the therapy of lymphoma. J Nanobiotechnology. 2021;19:8.
CAS
PubMed
PubMed Central
Google Scholar
15.
Shi M, Zhang J, Li J, Fan Y, Wang J, Solar W, Yang H, Peng C, Shen M, Shi X. Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal most cancers theranostics. J Mater Chem B. 2019;7:368–72.
CAS
PubMed
Google Scholar
16.
Tune Y, Cai L, Tian Z, Wu Y, Chen J. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic results towards drug-resistant most cancers cells. ACS Omega. 2020;5:15083–94.
CAS
PubMed
PubMed Central
Google Scholar
17.
Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, Luo L, Zuo Y, Wang X, Zhang X, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung most cancers chemotherapy towards multidrug resistance. Small. 2017;13:34.
Google Scholar
18.
Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-sensitive supply automobile based mostly on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for focused most cancers remedy. ACS Appl Mater Interfaces. 2017;9:18462–73.
CAS
PubMed
Google Scholar
19.
Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. Polydopamine and peptide adorned doxorubicin-loaded mesoporous silica nanoparticles as a focused drug supply system for bladder most cancers remedy. Drug Deliv. 2017;24:681–91.
CAS
PubMed
PubMed Central
Google Scholar
20.
Shao L, Li Y, Huang F, Wang X, Lu J, Jia F, Pan Z, Cui X, Ge G, Deng X, Wu Y. Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal remedy and in vivo photoacoustic imaging. Theranostics. 2020;10:7273–86.
CAS
PubMed
PubMed Central
Google Scholar
21.
Lei W, Solar C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug supply and mixed chemo-photothermal remedy. Mater Sci Eng C Mater Biol Appl. 2019;105:110103.
CAS
PubMed
Google Scholar
22.
Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X. Polydopamine-based floor modification of mesoporous silica nanoparticles as pH-sensitive drug supply autos for most cancers remedy. J Colloid Interface Sci. 2016;463:279–87.
CAS
PubMed
Google Scholar
23.
Li Y, Duo Y, Bao S, He L, Ling Ok, Luo J, Zhang Y, Huang H, Zhang H, Yu X. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for focused remedy in colorectal most cancers. Int J Nanomedicine. 2017;12:6239–57.
CAS
PubMed
PubMed Central
Google Scholar
24.
Shao M, Chang C, Liu Z, Chen Ok, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Polydopamine coated hole mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces. 2019;183:110427.
CAS
PubMed
Google Scholar
25.
Chen L, Zhang J, Zhou X, Yang S, Zhang Q, Wang W, You Z, Peng C, He C. Merging metallic natural framework with hole organosilica nanoparticles as a flexible nanoplatform for most cancers theranostics. Acta Biomater. 2019;86:406–15.
CAS
PubMed
Google Scholar
26.
Liao J, Zhang H, Wang X. Polydopamine-doped virus-like mesoporous silica coated decreased graphene oxide nanosheets for chemo-photothermal synergetic remedy. J Biomater Appl. 2020;35:28–38.
CAS
PubMed
Google Scholar
27.
Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hole mesoporous silica nanoparticles for managed drug supply. ChemMedChem. 2020;15:1940–6.
CAS
PubMed
Google Scholar
28.
Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, Zhang W, Wang P. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic focused chemo-photothermal remedy. Nanoscale. 2019;11:11012–24.
CAS
PubMed
Google Scholar
29.
Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou-Yang W, Solar H, et al. A dual-model imaging theragnostic system based mostly on mesoporous silica nanoparticles for enhanced most cancers phototherapy. Adv Healthc Mater. 2019;8:e1900840.
PubMed
Google Scholar
30.
Liu R, Zhang H, Zhang F, Wang X, Liu X, Zhang Y. Polydopamine doped decreased graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal remedy. Mater Sci Eng C Mater Biol Appl. 2019;96:138–45.
CAS
PubMed
Google Scholar
31.
Chai S, Kan S, Solar R, Zhou R, Solar Y, Chen W, Yu B. Fabricating polydopamine-coated MoSe2-wrapped hole mesoporous silica nanoplatform for managed drug launch and chemo-photothermal remedy. Int J Nanomedicine. 2018;13:7607–21.
CAS
PubMed
PubMed Central
Google Scholar
32.
Xu C, Gao F, Wu J, Niu S, Li F, Jin L, Shi Q, Du L. Biodegradable nanotheranostics with hyperthermia-induced bubble means for ultrasound imaging-guided chemo-photothermal remedy. Int J Nanomedicine. 2019;14:7141–53.
CAS
PubMed
PubMed Central
Google Scholar
33.
Deng Z, Tang M, Zhao L, Lengthy Y, Wen Z, Cheng Y, Zheng H. Focused H+-triggered bubble-generating nanosystems for efficient remedy in most cancers cells. Colloids Surf B Biointerfaces. 2017;160:207–14.
CAS
PubMed
Google Scholar
34.
Zhang Z, Zhang L, Huang C, Guo Q, Zuo Y, Wang N, Jin X, Zhang L, Zhu D. Gasoline-generating mesoporous silica nanoparticles with speedy localized drug launch for enhanced chemophotothermal tumor remedy. Biomater Sci. 2020;8:6754–63.
CAS
PubMed
Google Scholar
35.
Duo Y, Yang M, Du Z, Feng C, Xing C, Wu Y, Xie Z, Zhang F, Huang L, Zeng X, Chen H. CX-5461-loaded nucleolus-targeting nanoplatform for most cancers remedy via induction of pro-death autophagy. Acta Biomater. 2018;79:317–30.
CAS
PubMed
Google Scholar
36.
Lu J, Liu F, Li H, Xu Y, Solar S. Width-consistent mesoporous silica nanorods with a exactly managed side ratio for lysosome dysfunctional synergistic chemotherapy/photothermal remedy/hunger remedy/oxidative remedy. ACS Appl Mater Interfaces. 2020;12:24611–22.
CAS
PubMed
Google Scholar
37.
Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X. Focused supply of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal most cancers remedy. Int J Nanomedicine. 2018;13:1241–56.
CAS
PubMed
PubMed Central
Google Scholar
38.
Zhang P, Tang M, Huang Q, Zhao G, Huang N, Zhang X, Tan Y, Cheng Y. Mixture of 3-methyladenine remedy and Asn-Gly-Arg (NGR)-modified mesoporous silica nanoparticles loaded with temozolomide for glioma remedy in vitro. Biochem Biophys Res Commun. 2019;509:549–56.
CAS
PubMed
Google Scholar
39.
Cai C, Li X, Wang Y, Liu M, Shi X, Xia J, Shen M. Polydopamine-coated gold core/hole mesoporous silica shell particles as a nanoplatform for multimode imaging and photothermal remedy of tumors. Chem Eng J. 2019;362:842–50.
CAS
Google Scholar
40.
Li X, Xie C, Xia H, Wang Z. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for managed drug supply. Langmuir. 2018;34:9974–81.
CAS
PubMed
Google Scholar
41.
Wang L, Guan H, Wang Z, Xing Y, Zhang J, Cai Ok. Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug supply. Mol Pharm. 2018;15:2503–12.
CAS
PubMed
Google Scholar
42.
Shao L, Zhang R, Lu J, Zhao C, Deng X, Wu Y. Mesoporous Silica Coated Polydopamine Functionalized Lowered Graphene Oxide for Synergistic Focused Chemo-Photothermal Remedy. ACS Appl Mater Interfaces. 2017;9:1226–36.
CAS
PubMed
Google Scholar
43.
Tran VA, Vo VG, Shim Ok, Lee S-W, An SSA. Multimodal mesoporous silica nanocarriers for twin stimuli-responsive drug launch and glorious photothermal ablation of most cancers cells. Int J Nanomed. 2020;15:7667–85.
CAS
Google Scholar
44.
Ji F, Solar H, Qin Z, Zhang E, Cui J, Wang J, Li S, Yao F. Engineering polyzwitterion and polydopamine adorned doxorubicin-loaded mesoporous silica nanoparticles as a pH-sensitive drug supply. Drug. 2018;10:326.
Google Scholar
45.
Zhang Z, Huang C, Zhang L, Guo Q, Qin Y, Fan F, Li B, Xiao B, Zhu D, Zhang L. pH-sensitive and bubble-generating mesoporous silica-based nanoparticles for enhanced tumor mixture remedy. Acta Pharm Sin B. 2021;11:520–33.
CAS
PubMed
Google Scholar
46.
Seth A, Gholami Derami H, Gupta P, Wang Z, Rathi P, Gupta R, Cao T, Morrissey JJ, Singamaneni S. Polydopamine-mesoporous silica core-shell nanoparticles for mixed photothermal immunotherapy. ACS Appl Mater Interfaces. 2020;12:42499–510.
CAS
PubMed
PubMed Central
Google Scholar
47.
Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica blended oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29:9.
Google Scholar
48.
Wen J, Yang Ok, Liu F, Li H, Xu Y, Solar S. Numerous gatekeepers for mesoporous silica nanoparticle based mostly drug supply techniques. Chem Soc Rev. 2017;46:6024–45.
CAS
PubMed
Google Scholar
49.
Cheng L, Liu C, Wu H, Zhao H, Wang L. Interfacial assembled mesoporous polydopamine nanoparticles decreased graphene oxide for top efficiency of waterborne epoxy-based anticorrosive coatings. J Colloid Interface Sci. 2022;606:1572–85.
CAS
PubMed
Google Scholar
50.
Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, Hu Y, Solar H, Fu Z, Wang Y, et al. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 present potential for pores and skin wound remedy. J Nanobiotechnol. 2021;19:309.
Google Scholar
51.
Qiu J, Shi Y, Xia Y. Polydopamine nanobottles with photothermal functionality for managed launch and associated purposes. Adv Mater. 2021;210:4729.
Google Scholar
52.
Tang J, Liu J, Li C, Li Y, Tade MO, Dai S, Yamauchi Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores via meeting of diblock copolymer micelles. Angew Chem Int Ed Engl. 2015;54:588–93.
CAS
PubMed
Google Scholar
53.
Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an rising therapy modality for most cancers. Nature Critiques Drug Discovery. 2008;7:771–82.
CAS
PubMed
Google Scholar
54.
Mezzavilla S, Baldizzone C, Mayrhofer KJ, Schüth F. Normal technique for the synthesis of hole mesoporous carbon spheres with tunable textural properties. ACS Appl Mater Interfaces. 2015;7:12914–22.
CAS
PubMed
Google Scholar
55.
Xin W, Tune YJRA. Mesoporous carbons: latest advances in synthesis and typical purposes. RSC Adv. 2015;5:83239–85.
CAS
Google Scholar
56.
Li J, Ren H, Zou X, Cai Ok, Zhao N, Zhu G. Arduous-template synthesis of micro-mesoporous natural frameworks with managed hierarchicity. Chem Commun (Camb). 2018;54:8335–8.
CAS
Google Scholar
57.
Kamiyama A, Kubota Ok, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh Ok, Komaba S. MgO-template synthesis of extraordinarily excessive capability arduous carbon for Na-Ion battery. Angew Chem Int Ed Engl. 2021;60:5114–20.
CAS
PubMed
PubMed Central
Google Scholar
58.
Doustkhah E, Hassandoost R, Khataee A, Luque R, Assadi MHN. Arduous-templated metal-organic frameworks for superior purposes. Chem Soc Rev. 2021;50:2927–53.
CAS
PubMed
Google Scholar
59.
Banerjee R, Ghosh D, Satra J, Ghosh AB, Singha D, Nandi M, Biswas P. One step synthesis of a gold/ordered mesoporous carbon composite utilizing a tough template technique for electrocatalytic oxidation of methanol and colorimetric dedication of glutathione. ACS Omega. 2019;4:16360–71.
CAS
PubMed
PubMed Central
Google Scholar
60.
Chen A, Li Y, Yu Y, Li Y, Xia Ok, Wang Y, Li S, Zhang L. Synthesis of hole mesoporous carbon spheres by way of “dissolution-capture” technique for efficient phenol adsorption. Carbon. 2016;103:157–62.
CAS
Google Scholar
61.
Zhao D, Tang Z, Xu W, Wu Z, Ma L-J, Cui Z, Yang C, Li L. N, S-codoped CNTs supported Co4S3 nanoparticles ready by utilizing CdS nanorods as sulfur sources and arduous templates: an environment friendly catalyst for reversible oxygen electrocatalysis. J Coll Interface Sci. 2020;560:186–97.
CAS
Google Scholar
62.
Xu Z, Wu Y, Wu H, Solar N, Deng C. Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome analysis. Anal Chim Acta. 2021;1146:53–60.
CAS
PubMed
Google Scholar
63.
Li T, Ding B, Wang J, Qin Z, Fernando JFS, Bando Y, Nanjundan AK, Kaneti YV, Golberg D, Yamauchi Y. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12:14993–5001.
CAS
PubMed
Google Scholar
64.
Guan BY, Yu L, Lou XW. Formation of uneven bowl-like mesoporous particles by way of emulsion-induced interface anisotropic meeting. J Am Chem Soc. 2016;138:11306–11.
CAS
PubMed
Google Scholar
65.
Peng L, Hung CT, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile nanoemulsion meeting method to synthesize purposeful mesoporous carbon nanospheres with tunable pore sizes and architectures. J Am Chem Soc. 2019;141:7073–80.
CAS
PubMed
Google Scholar
66.
Peng L, Peng H, Hung C-T, Guo D, Duan L, Ma B, Liu L, Li W, Zhao D. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem. 2021;7:1020–32.
CAS
Google Scholar
67.
Lin Ok, Gan Y, Zhu P, Li S, Lin C, Yu S, Zhao S, Shi J, Li R, Yuan J. Hole mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug supply. Nanotechnology. 2021;32:89.
Google Scholar
68.
Guan BY, Zhang SL, Lou XWD. Realization of walnut-shaped particles with macro-/mesoporous open channels via pore structure manipulation and their use in electrocatalytic oxygen discount. Angew Chem Int Ed Engl. 2018;57:6176–80.
CAS
PubMed
Google Scholar
69.
Xiao-Ling X, Mei-Xuan C, Xue-Fang L, Yu-Yin D, Gao-Feng S, Jing Q, Meng-Lu Z, Xiao-Ying Y, Lian Y, Jian-Tune J, Yong-Zhong D: Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to boost photodynamic remedy by inhibiting VE-cadherin internalization. Chem Eng J 2021; 414:23.
70.
Liu Y, Fan Q, Huo Y, Liu C, Li B, Li Y. Development of a mesoporous polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation construction for controllable drug launch and toxicity shielding. ACS Appl Mater Interfaces. 2020;12:57410–20.
CAS
PubMed
Google Scholar
71.
Shu G, Chen M, Tune J, Xu X, Lu C, Du Y, Xu M, Zhao Z, Zhu M, Fan Ok, et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided mixed chemo-photothermal therapy of hepatic most cancers. Bioact Mater. 2021;6:1423–35.
CAS
PubMed
Google Scholar
72.
Wu D, Zhou J, Chen X, Chen Y, Hou S, Qian H, Zhang L, Tang G, Chen Z, Ping Y, et al. Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered supply of purposeful proteins. Biomaterials. 2020;238:119847.
CAS
PubMed
Google Scholar
73.
Cao H, Yang Y, Liang M, Ma Y, Solar N, Gao X, Li J. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal remedy. Chem Commun (Camb). 2021;57:255–8.
CAS
Google Scholar
74.
Sadaba N, Larrañaga A, Orpella-Aceret G, Bettencourt AF, Martin V, Biggs M, Ribeiro IAC, Ugartemendia JM, Sarasua JR, Zuza E. Advantages of polydopamine as particle/matrix interface in polylactide/PD-BaSO(4) scaffolds. Int J Mol Sci. 2020;21:67.
Google Scholar
75.
Feng T, Ji W, Zhang Y, Wu F, Tang Q, Wei H, Mao L, Zhang M. Zwitterionic polydopamine engineered interface for in vivo sensing with excessive biocompatibility. Angew Chem Int Ed Engl. 2020;59:23445–9.
CAS
PubMed
Google Scholar
76.
Chen F, Xing Y, Wang Z, Zheng X, Zhang J, Cai Ok. Nanoscale polydopamine (PDA) meets π-π interactions: an interface-directed coassembly method for mesoporous nanoparticles. Langmuir. 2016;32:12119–28.
CAS
PubMed
Google Scholar
77.
Xing Y, Zhang J, Chen F, Liu J, Cai Ok. Mesoporous polydopamine nanoparticles with co-delivery perform for overcoming multidrug resistance by way of synergistic chemo-photothermal remedy. Nanoscale. 2017;9:8781–90.
CAS
PubMed
Google Scholar
78.
Wang Z, Wang L, Prabhakar N, Xing Y, Rosenholm JM, Zhang J, Cai Ok. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation means for mixed photothermal and siRNA remedy. Acta Biomater. 2019;86:416–28.
CAS
PubMed
Google Scholar
79.
De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nature Critiques Illness Primers. 2019;5:13.
PubMed
Google Scholar
80.
Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature critiques Most cancers. 2015;15:409–25.
CAS
PubMed
PubMed Central
Google Scholar
81.
Dou Y, Liu Y, Zhao F, Guo Y, Li X, Wu M, Chang J, Yu C. Radiation-responsive scintillating nanotheranostics for decreased hypoxic radioresistance below ROS/NO-mediated tumor microenvironment regulation. Theranostics. 2018;8:5870–89.
CAS
PubMed
PubMed Central
Google Scholar
82.
Zhang J, Liu Y, Wang X, Du J, Tune Ok, Li B, Chang H, Ouyang R, Miao Y, Solar Y, Li Y. Nanozyme-incorporated biodegradable bismuth mesoporous radiosensitizer for tumor microenvironment-modulated hypoxic tumor thermoradiotherapy. ACS Appl Mater Interfaces. 2020;12:57768–81.
CAS
PubMed
Google Scholar
83.
Wang H, Jia D, Yuan D, Yin X, Yuan F, Wang F, Shi W, Li H, Zhu L-M, Fan Q. Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. J Nanobiotechnol. 2021;19:138.
CAS
Google Scholar
84.
Huang X, Wu J, He M, Hou X, Wang Y, Cai X, Xin H, Gao F, Chen Y. Mixed most cancers chemo-photodynamic and photothermal remedy based mostly on ICG/PDA/TPZ-loaded nanoparticles. Mol Pharm. 2019;16:2172–83.
CAS
PubMed
Google Scholar
85.
Yu HH, Lin CH, Chen YC, Chen HH, Lin YJ, Lin KA. Dopamine-modified zero-valent iron nanoparticles for dual-modality photothermal and photodynamic breast most cancers remedy. ChemMedChem. 2020;15:1645–51.
CAS
PubMed
Google Scholar
86.
Zhang SQ, Liu X, Solar QX, Johnson O, Yang T, Chen ML, Wang JH, Chen W. CuS@PDA-FA nanocomposites: a twin stimuli-responsive DOX supply automobile with ultrahigh loading stage for synergistic photothermal-chemotherapies on breast most cancers. J Mater Chem B. 2020;8:1396–404.
CAS
PubMed
PubMed Central
Google Scholar
87.
Liu Y, Ai Ok, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an environment friendly near-infrared photothermal therapeutic agent for in vivo most cancers remedy. Adv Mater. 2013;25:1353–9.
CAS
PubMed
PubMed Central
Google Scholar
88.
Liu X, Xie Z, Shi W, He Z, Liu Y, Su H, Solar Y, Ge D. Polynorepinephrine nanoparticles: a novel photothermal nanoagent for chemo-photothermal most cancers remedy. ACS Appl Mater Interfaces. 2019;11:19763–73.
CAS
PubMed
Google Scholar
89.
Peng F, Zhao F, Shan L, Li R, Jiang S, Zhang P. Black phosphorus nanosheets-based platform for focused chemo-photothermal synergistic most cancers remedy. Colloids Surf B Biointerfaces. 2021;198:111467.
CAS
PubMed
Google Scholar
90.
Qiao J, Tian F, Deng Y, Shang Y, Chen S, Chang E, Yao J. Bio-orthogonal click-targeting nanocomposites for chemo-photothermal synergistic remedy in breast most cancers. Theranostics. 2020;10:5305–21.
CAS
PubMed
PubMed Central
Google Scholar
91.
Zhang L, Yang P, Guo R, Solar J, Xie R, Yang W. Multifunctional mesoporous polydopamine with hydrophobic paclitaxel for photoacoustic imaging-guided chemo-photothermal synergistic remedy. Int J Nanomed. 2019;14:8647–63.
CAS
Google Scholar
92.
Chen L, Fu C, Deng Y, Wu W, Fu A. A pH-sensitive nanocarrier for tumor focusing on: supply of ruthenium advanced for tumor theranostic by pH-sensitive nanocapsule. Pharm Res. 2016;33:2989–98.
CAS
PubMed
Google Scholar
93.
Dai Y, Xu C, Solar X, Chen X. Nanoparticle design methods for enhanced anticancer remedy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46:3830–52.
CAS
PubMed
PubMed Central
Google Scholar
94.
Chen H, Chen H, Wang Y, Bai Y, Yuan P, Che Z, Zhang L. A novel self-coated polydopamine nanoparticle for synergistic photothermal-chemotherapy. Colloids Surf B Biointerfaces. 2021;200:111596.
CAS
PubMed
Google Scholar
95.
Yao F, An Y, Li X, Li Z, Duan J, Yang X. Focused remedy of colon most cancers by aptamer-guided holliday junctions loaded with doxorubicin. Int J Nanomed. 2020;15:2119–29.
CAS
Google Scholar
96.
Xu X, Li L, Li X, Tao D, Zhang P, Gong J. Aptamer-protamine-siRNA nanoparticles in focused remedy of ErbB3 constructive breast most cancers cells. Int J Pharma. 2020;590:119963.
CAS
Google Scholar
97.
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized section change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B. 2019;7:1246–57.
CAS
PubMed
Google Scholar
98.
Wang Y, Liu Y, Zhou J-e, Lin L, Jia C, Wang J, Yu L, Wang Y, Yan Z. Controllable hydrogen launch for gas-assisted chemotherapy and ultrasonic imaging of drug-resistant tumors. Chem Eng J. 2021;421:129917.
CAS
Google Scholar
99.
Dai L, Wei D, Zhang J, Shen T, Zhao Y, Liang J, Ma W, Zhang L, Liu Q, Zheng Y. Aptamer-conjugated mesoporous polydopamine for docetaxel focused supply and synergistic photothermal remedy of prostate most cancers. Cell Prolif. 2021;00:e13130.
CAS
Google Scholar
100.
Bahreyni A, Mohamud Y, Luo H. Rising nanomedicines for efficient breast most cancers immunotherapy. J Nanobiotechnol. 2020;18:180.
Google Scholar
101.
Huang C, Zhang L, Guo Q, Zuo Y, Wang N, Wang H, Kong D, Zhu D, Zhang L. Sturdy nanovaccine based mostly on polydopamine-coated mesoporous silica nanoparticles for efficient photothermal-immunotherapy towards melanoma. 2021;31:2010637.
CAS
Google Scholar
102.
Wang L, He Y, He T, Liu G, Lin C, Li Ok, Lu L, Cai Ok. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials. 2020;255:120208.
CAS
PubMed
Google Scholar
103.
Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu Ok. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic most cancers remedy. Angew Chem Int Ed Engl. 2019;58:5920–4.
CAS
PubMed
Google Scholar
104.
Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang S-B, Feng J, Zhang X-Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12:12181–92.
CAS
PubMed
Google Scholar
105.
Cheng H-L, Guo H-L, Xie A-J, Shen Y-H, Zhu M-Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX nanocomposites: magnetic focusing on guided trimode combinatorial chemotherapy/PDT/PTT for most cancers. J Inorg Biochem. 2021;215:111329.
CAS
PubMed
Google Scholar
106.
Zhang M, Wang W, Wu F, Zheng T, Ashley J, Mohammadniaei M, Zhang Q, Wang M, Li L, Shen J, Solar Y. Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic most cancers remedy. Biomaterials. 2020;252:120106.
CAS
PubMed
Google Scholar
107.
Hu X, Lu Y, Shi X, Yao T, Dong C, Shi S. Integrating in situ formation of nanozymes with mesoporous polydopamine for mixed chemo, photothermal and hypoxia-overcoming photodynamic remedy. Chem Commun (Camb). 2019;55:14785–8.
CAS
Google Scholar
108.
Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated fenton and fenton-like reactions. 2019; 58:946–956.
109.
Ren Z, Solar S, Solar R, Cui G, Hong L, Rao B, Li A, Yu Z, Kan Q, Mao Z. A metal-polyphenol-coordinated nanomedicine for synergistic cascade most cancers chemotherapy and chemodynamic remedy. Adv Mater. 2020;32:e1906024.
PubMed
Google Scholar
110.
Xiao Z, Zuo W, Chen L, Wu L, Liu N, Liu J, Jin Q, Zhao Y, Zhu X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic remedy synergetic photothermal/chemotherapy. ACS Utilized Supplies & Interfaces. 2021;13:43925–36.
CAS
Google Scholar
111.
Huang X, Chen L, Lin Y, Tou KIP, Cai H, Jin H, Lin W, Zhang J, Cai J, Zhou H, Pi J: Tumor focusing on and penetrating biomimetic mesoporous polydopamine nanoparticles facilitate photothermal killing and autophagy blocking for synergistic tumor ablation. Acta Biomaterialia 2021.
112.
Pan P, Zhang T, Yue Q, Elzatahry AA, Alghamdi A, Cheng X, Deng Y. Interface coassembly and polymerization on magnetic colloids: towards core-shell purposeful mesoporous polymer microspheres and their carbon derivatives. Adv Sci (Weinh). 2020;7:2000443.
CAS
Google Scholar
113.
Chen G, Yan Y, Wang J, Okay YS, Zhong G, Guan BY, Yamauchi Y. Normal formation of macro-/mesoporous nanoshells from interfacial meeting of irregular mesostructured nanounits. Angew Chem Int Ed Engl. 2020;59:19663–8.
CAS
PubMed
Google Scholar
114.
Kuang Y, Zhang Y, Zhao Y, Cao Y, Zhang Y, Chong Y, Pei R. Twin-stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided mixed chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces. 2020;12:35928–39.
CAS
PubMed
Google Scholar
115.
Xu M, Chi B, Han Z, He Y, Tian F, Xu Z, Li L, Wang J. Controllable synthesis of uncommon earth (Gd3+,Tm3+) doped Prussian blue for multimode imaging guided synergistic therapy. Dalton Trans. 2020;49:12327–37.
CAS
PubMed
Google Scholar
116.
Pu Y, Zhu Y, Qiao Z, Xin N, Chen S, Solar J, Jin R, Nie Y, Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a robust MR/PA dual-modal imaging agent for PTT/PDT synergistic remedy. J Mater Chem B. 2021;9:1846–57.
CAS
PubMed
Google Scholar
117.
Kang S, Baskaran R, Ozlu B, Davaa E, Kim JJ, Shim BS, Yang S-G: T1-positive Mn2+-doped multi-stimuli responsive poly(L-DOPA) nanoparticles for photothermal and photodynamic mixture most cancers remedy. Most cancers 2020, 8:417.
118.
Zheng Z, Chen Q, Rong S, Dai R, Jia Z, Peng X, Zhang R. Two-stage activated nano-truck enhanced particular aggregation and deep supply for synergistic tumor ablation. Nanoscale. 2020;12:15845–56.
CAS
PubMed
Google Scholar
119.
Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle allows extremely environment friendly manganese encapsulation for enhanced MRI-guided photothermal remedy. Nanoscale. 2021;13:6439–46.
CAS
PubMed
Google Scholar
120.
Guan Q, Guo R, Huang S, Zhang F, Liu J, Wang Z, Yang X, Shuai X, Cao Z. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis most cancers remedy. J Management Launch. 2020;320:392–403.
CAS
PubMed
Google Scholar
121.
Fan Ok, Lu C, Shu G, Lv XL, Qiao E, Zhang N, Chen M, Tune J, Wu F, Zhao Z, et al. Sialic acid-engineered mesoporous polydopamine twin loaded with ferritin gene and SPIO for attaining endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechno. 2021;19:76.
CAS
Google Scholar
122.
Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Solar Y. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide to be used in US/CT dual-mode imaging and synergistic high-intensity centered ultrasound ablation of cervical most cancers. J Mater Chem B. 2016;4:4164–81.
CAS
PubMed
Google Scholar
123.
Fukuda H, Numata Ok, Nozaki A, Morimoto M, Kondo M, Tanaka Ok, Maeda S, Yamagata J, Ohto M, Ito R, et al. Usefulness of US-CT 3D twin imaging for the planning and monitoring of hepatocellular carcinoma therapy utilizing HIFU. Eur J Radiol. 2011;80:e306–10.
Google Scholar
124.
Mauri G, Monfardini L, Della Vigna P, Montano F, Bonomo G, Buccimazza G, Camisassi N, Rossi D, Maiettini D, Varano GM, et al. Actual-Time US-CT fusion imaging for steerage of thermal ablation in of renal tumors invisible or poorly seen with US: ends in 97 circumstances. Int J Hyperthermia. 2021;38:771–6.
CAS
PubMed
Google Scholar
125.
Yuan G, Cen J, Liao J, Huang Y, Jie L. In situ hydrogen nanogenerator for bimodal imaging guided synergistic photothermal/hydrogen therapies. Nanoscale. 2021;13:15576–89.
CAS
PubMed
Google Scholar
126.
Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, Wilson KE. Photoacoustic molecular imaging for the identification of lymph node metastasis in head and neck most cancers utilizing an anti-EGFR antibody-dye conjugate. J Nucl Med. 2021;62:648–55.
CAS
PubMed
Google Scholar
127.
Ding N, Sano Ok, Kanazaki Ok, Shimizu Y, Watanabe H, Namita T, Shiina T, Ono M, Saji H. Delicate photoacoustic/magnetic resonance twin imaging probe for detection of malignant tumors. J Pharm Sci. 2020;109:3153–9.
CAS
PubMed
Google Scholar
128.
Park B, Bang CH, Lee C, Han JH, Choi W, Kim J, Park GS, Rhie JW, Lee JH, Kim C. 3D wide-field multispectral photoacoustic imaging of human melanomas in vivo: a pilot research. J Eur Acad Dermatol Venereol. 2021;35:669–76.
CAS
PubMed
Google Scholar
129.
Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal remedy of tumors. Drug Deliv. 2020;27:367–77.
CAS
PubMed
PubMed Central
Google Scholar
130.
Jagat RK, Rupinder KK, Hannah B, Sara B. Current advances on the roles of NO in most cancers and persistent inflammatory problems. Curr Med Chem. 2009;16:2373–94.
Google Scholar
131.
Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H2S as a bridge linking irritation, oxidative stress and endothelial biology: a doable protection within the battle towards SARS-CoV-2 an infection? An infection 2021, 9:1107.
132.
Gullotta F, Masi Advert, Ascenzi P. Carbon monoxide: An uncommon drug. IUBMB Life. 2012;64:378–86.
CAS
PubMed
Google Scholar
133.
Wu D, Duan X, Guan Q, Liu J, Yang X, Zhang F, Huang P, Shen J, Shuai X, Cao Z: Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided most cancers remedy. Adv Func Mater 2019, 29:89.
134.
Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V. Multispectral optoacoustic tomography (MSOT) of human breast most cancers. Clin Most cancers Res. 2017;23:6912–22.
CAS
PubMed
Google Scholar
135.
Yang S, You Q, Yang L, Li P, Lu Q, Wang S, Tan F, Ji Y, Li N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic most cancers remedy. ACS Appl Mater Interfaces. 2019;11:6777–88.
CAS
PubMed
Google Scholar
136.
Cheng Y, Lu T, Wang Y, Tune Y, Wang S, Lu Q, Yang L, Tan F, Li J, Li N. Glutathione-mediated clearable nanoparticles based mostly on ultrasmall Gd2O3 for MSOT/CT/MR imaging guided photothermal/radio mixture most cancers remedy. Mol Pharm. 2019;16:3489–501.
CAS
PubMed
Google Scholar
137.
Ke Ok, Yang W, Xie X, Liu R, Wang LL, Lin WW, Huang G, Lu CH, Yang HH. Copper manganese sulfide nanoplates: a brand new two-dimensional theranostic nanoplatform for MRI/MSOT dual-modal imaging-guided photothermal remedy within the second near-infrared window. Theranostics. 2017;7:4763–76.
CAS
PubMed
PubMed Central
Google Scholar
138.
Wang Y, Tune S, Lu T, Cheng Y, Tune Y, Wang S, Tan F, Li J, Li N. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic most cancers. Biomaterials. 2019;220:119405.
CAS
PubMed
Google Scholar
139.
Van den Wyngaert T, Elvas F, De Schepper S, Kennedy JA, Israel O: SPECT/CT: standing on the shoulders of giants, it’s time to attain for the sky! J Nucl Med 2020, 61:1284–1291.
140.
Ritt P, Kuwert T. Quantitative SPECT/CT—method and medical purposes. In Molecular Imaging in Oncology. In: Schober O, Kiessling F, Debus J, ed. Cham: Springer Worldwide Publishing; 2020. p. 565–90
141.
Huang S, Wu Y, Li C, Xu L, Huang J, Huang Y, Cheng W, Xue B, Zhang L, Liang S, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to ship high-loading radioiodine for anaplastic thyroid carcinoma imaging and remedy. Nanoscale. 2021;13:15021–30.
CAS
PubMed
Google Scholar
142.
Liu G, Wang L, Liu J, Lu L, Mo D, Li Ok, Yang X, Zeng R, Zhang J, Liu P, Cai Ok. Engineering of a core-shell nanoplatform to beat multidrug resistance by way of ATP deprivation. Adv Healthc Mater. 2020;9:e2000432.
PubMed
Google Scholar
143.
Ding M, Miao Z, Zhang F, Liu J, Shuai X, Zha Z, Cao Z. Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic effectivity for overcoming tumor hypoxia. Biomater Sci. 2020;8:4157–65.
CAS
PubMed
Google Scholar
144.
Wang Z, Zhang J, Chen F, Cai Ok. Fluorescent miRNA evaluation enhanced by mesopore results of polydopamine nanoquenchers. Analyst. 2017;142:2796–804.
CAS
PubMed
Google Scholar
145.
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Purposes for Floor Modification and Superior Nanomedicine. ACS Nano. 2019;13:8537–65.
CAS
PubMed
Google Scholar
146.
Mrówczyński R, Bunge A, Liebscher J: Polydopamine—an organocatalyst moderately than an harmless polymer. 2014; 20:8647–8653.